612 research outputs found

    Two novel aggregation-based algebraic multigrid methods

    Get PDF
    In the last two decades, substantial effort has been devoted to solve large systems of linear equations with algebraic multigrid (AMG) method. Usually, these systems arise from discretizing partial differential equations (PDE) which we encounter in engineering problems. The main principle of this methodology focuses on the elimination of the so-called algebraic smooth error after the smoother has been applied. Smoothed aggregation style multigrid is a particular class of AMG method whose coarsening process differs from the classic AMG. It is also a very popular and effective iterative solver and preconditioner for many problems. In this paper, we present two kinds of novel methods which both focus on the modification of the aggregation algorithm, and both lead a better performance while apply to several problems, such as Helmholtz equation

    Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems

    Full text link
    [EN] We consider the numerical solution of linear systems arising from computational electromagnetics applications. For large scale problems the solution is usually obtained iteratively with a Krylov subspace method. It is well known that for ill conditioned problems the convergence of these methods can be very slow or even it may be impossible to obtain a satisfactory solution. To improve the convergence a preconditioner can be used, but in some cases additional strategies are needed. In this work we study the application of spectral lowrank updates (SLRU) to a previously computed sparse approximate inverse preconditioner.The updates are based on the computation of a small subset of the eigenpairs closest to the origin. Thus, the performance of the SLRU technique depends on the method available to compute the eigenpairs of interest. The SLRU method was first used using the IRA s method implemented in ARPACK. In this work we investigate the use of a Jacobi Davidson method, in particular its JDQR variant. The results of the numerical experiments show that the application of the JDQR method to obtain the spectral low-rank updates can be quite competitive compared with the IRA s method.Mas Marí, J.; Cerdán Soriano, JM.; Malla Martínez, N.; Marín Mateos-Aparicio, J. (2015). Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems. Journal of the Spanish Society of Applied Mathematics. 67:39-50. doi:10.1007/s40324-014-0025-6S395067Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience with sequential, and parallel, preconditioned Jacobi–Davidson for large sparse symmetric matrices. J. Comput. Phys. 188(1), 318–331 (2003)Carpentieri, B.: Sparse preconditioners for dense linear systems from electromagnetics applications. PhD thesis, Institut National Polytechnique de Toulouse, CERFACS (2002)Carpentieri, B., Duff, I.S., Giraud, L.: Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism. Numer. Linear Algebr. Appl. 7(7–8), 667–685 (2000)Carpentieri, B., Duff, I.S., Giraud, L.: A class of spectral two-level preconditioners. SIAM J. Sci. Comput. 25(2), 749–765 (2003)Carpentieri, B., Duff, I.S., Giraud, L., Magolu monga Made, M.: Sparse symmetric preconditioners for dense linear systems in electromagnetism. Numer. Linear Algebr. Appl. 11(8–9), 753–771 (2004)Carpentieri, B., Duff, I.S., Giraud, L., Sylvand, G.: Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations. SIAM J. Sci. Comput. 27(3), 774–792 (2005)Darve, E.: The fast multipole method I: error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38(1), 98–128 (2000)Fokkema, D.R., Sleijpen, G.L., Van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(3), 325–348 (1987)Grote, M., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)Harrington, R.: Origin and development of the method of moments for field computation. IEEE Antenna Propag. Mag. (1990)Kunz, K.S., Luebbers, R.J.: The finite difference time domain method for electromagnetics. SIAM J. Sci. Comput. 18(3), 838–853 (1997)Maxwell, J.C.: A dynamical theory of the electromagnetic field. Roy. S. Trans. CLV, (1864). Reprinted in Tricker, R. A. R. The Contributions of Faraday and Maxwell to Electrial Science, Pergamon Press (1966)Marín, J., Malla M.: Some experiments preconditioning via spectral low rank updates for electromagnetism applications. In: Proceedings of the international conference on preconditioning techniques for large sparse matrix problems in scientific and industrial applications (Preconditioning 2007), Toulouse (2007)Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)Sorensen, D.C., Lehoucq, R.B., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998)Rao, S.M., Wilton, D.R., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antenna Propag. 30, 409–418 (1982)Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996)Silvester, P.P., Ferrari, R.L.: Finite elements for electrical engineers. Cambridge University Press, Cambridge (1990)Sleijpen, S.L., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12(6), 631–644 (1992

    In their own words: five generations of Britons describe their experiences of the coronavirus pandemic. Initial findings from the COVID-19 Survey in Five National Longitudinal Studies

    Get PDF
    This briefing is based on data from a Covid-19-focused web survey of over 18,000 people, collected between 2 and 31 May 2020. The survey participants and their families are members of five nationally representative cohort studies that have been collecting data since childhood. The Covid-19 survey included one open-ended question, in which respondents were asked to describe experiences of the pandemic in their own words. This briefing focuses on the responses to that open-ended question

    A hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems

    Get PDF
    In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit type, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize sparsity in the inverse factors and consequently reduce the factorization costs. Numerical experiments demonstrate the good potential of the proposed solver to precondition effectively general linear systems, also against other state-of-the-art iterative solvers of both implicit and explicit form

    Aerodynamic shape optimization by means of sequential linear programming techniques

    Get PDF
    A Sequential Linear Programming technique, known as the method of centers, is the driver of an aerodynamic shape optimization framework on unstructured meshes. The first order information required by this technique, functional values and their gradients, are computed by a median-dual flow/adjoint solver which is coupled to an analytical shape parameterization. Functional and geometric constraints are easily handled by the algorithm which appears to be very effective in obtaining efficiently near-optimal designs. Shape optimization results are presented for transonic as well as supersonic flows involving appreciable shape deformations

    Development of the Discrete Adjoint for a Three-Dimensional Unstructured Euler Solver

    Get PDF
    The discrete adjoint of a reconstruction-based unstructured finite volume formulation for the Euler equations is derived and implemented. The matrix-vector products required to solve the adjoint equations are computed on-the-fly by means of an efficient two-pass assembly. The adjoint equations are solved with the same solution scheme adopted for the flow equations. The scheme is modified to efficiently account for the simultaneous solution of several adjoint equations. The implementation is demonstrated on wing and wing–body configurations
    • …
    corecore